Solar Panel Deployment System for NASA

Concept Generation Ideas

Deploying Mechanism

Pressure Induced

- Roll-out & retract method
- > Mimosa leaf expansion

Surface Tension Expansion

- Hydration of hydrophobic fibers
- Tri-block copolymer expansion

Electric shape memory
 Electric change can cause panel to deploy & retract

Nonwoven mats were not ideal for surface tension expansion

Linearly/radially aligned fibers are needed

Final Design

Concept Design

Concept Design

Analysis Topics and Equations

Topics	Subcomponent	Equation	
Statics & Dynamics	Mambranaa	Moments of Inertia	
	wembranes	Static Equilibrium	
	Constant Earon Spring	Hooke's Law	
	Constant Force Spring	Angular velocity and acceleration	
Fluid Mechanics		Pressure Vessel	
	Membranes	Bernoulli's Equation	
		Newton's 2 nd Law	
Mashina Elamant Dasim	Spring Material	Distortion Energy Theory	
Wachine Element Design	Plastic Material	Stress/Strain	
Intro to Nanotechnology	Photovoltaic Layers	Energy Band Gaps	

Subcomponent	Equation	Assumptions		
Membranes	$\sum M = \Delta P(2R_i)LR_i - \Delta P(2R_o)LR_o$ $= \Delta P(2L)(R_i^2 - R_o^2)$			
	$\sum F_x = 0 \ ; \ \sum F_y = 0 \ ; \ \sum M_o = 0$	All forces are at equilibriumNo external body forces		
	$\sigma_a = \frac{P_i r}{t}$; $P = \frac{F}{A}$	 Equal thickness throughout 		
	$\frac{P_1}{\rho} + \frac{v_1^2}{2} + gz_1 = \frac{P_2}{\rho} + \frac{v_2^2}{2} + gz_2$	 Steady State Ignore gravity forces (outer space) Assume frictionless (no minor losses) Incompressible flow 		
	F = ma	Constant acceleration		
Constant Force Spring	$\sum M = -PA\frac{y}{2} + k_t\theta = 0$	 k, A, & y are constant 		
	$\omega = rac{\Delta heta}{\Delta t}$; $lpha = rac{\Delta \omega}{\Delta t}$	Time is estimated to closest secondConstant accelerationConstant velocity		
	$\sigma' = (\sigma_A^2 - \sigma_A \sigma_B + \sigma_B^2)^{1/2}$	 Homogenous and ductile material 		
Plastic Material	$E = \frac{\sigma}{\varepsilon} = \frac{FL_o}{A_o\Delta L}$	 Ideal plastics (purest form) 		
Photovoltaic Layers	• $\Delta E = \frac{hc}{\lambda}$ • $FF = \frac{\mathbf{I}_{mp} \cdot \mathbf{V}_{mp}}{\mathbf{I}_{sc} \cdot \mathbf{J}_{sc}}$ • $\eta = \frac{V_{oc} \cdot \mathbf{I}_{sc} \cdot FF}{P_{in}}$ • $P_{\max} = V_{oc} \cdot \mathbf{I}_{sc} \cdot FF$	 Speed of light is constant Wavelength is constant Planck's unit is constant No outside energy losses/gains 		

Nomenclature

- M the moment force produced around the base of the mechanism
- P pressure inside of the membrane
- R_i the inner radius of the membrane
- R_{o} the outer radius of the membrane
- L the length of the membrane

 F_x , F_y , & F_z are forces in the x,y and z axes respectively.

- E Young's modulus (modulus of elasticity)
- F the force exerted on an object under tension
- A₀ the original cross-sectional area through which the force is applied
- ΔL the amount by which the length of the object changes
- L_0 the original length of the object.
- c the speed of light (299,792,458 m/s)
- v the frequency
- λ the wavelength
- E the energy of light
- h Planck's constant (6.626x10⁻³⁴ m² kg/s)

Moment Force Analysis

Moment as a function of stiffness, :

Moment Force Analysis Continued..

Moment as a function of rotational stiffness, pressure, and rotation :

$$\sum M = -PA\frac{y}{2} + k_t\theta = 0$$

$$k_t \left(\frac{lb \cdot in}{rad} \right) = constant$$

 $k_t \left(k_{spring}, k_{PV} \right)$

Stiffness vs. Pressure

Membrane analysis depiction:

Velocity vs Pressure Analysis

Air velocity as a function of air pressure:

Gauge Pressure (PSI)	Velocity of Air (ft/s)		
1	62.01		
2	87.70		
3	107.41		
4	124.03		
5	138.67		
6	151.90		
7	164.07		
8	175.40		
9	186.04		
10	196.11		
11	205.68		
12	214.82		
13	223.60		
14	232.04		
15	240.18		
16	248.06		
17	255.69		
18	263.11		
19	270.31		
20	277.34		

 $P_{Compressed}$ Air $\frac{1}{2}\rho v^2$ **Velocity v. Pressure** 300.00 250.00 Aelocity (f1/s) 200.00 (f1/s) 150.00 100.00 50.00 0.00 20 0 5 10 15 25 Pressure (PSI)

Axial & Tangential Stress of Membrane Structure

Pressure vessel stress of polymer membrane as a function of pressure, radius, and thickness:

$$\sigma_a = \frac{P_i r}{t}$$

$$\sigma_t = \frac{P_i r}{2t}$$

		<u>Max Pressure</u>		1	//	
8.5 psi						
		1 7				
Pressure (psi)	Radius (in.)	Thickness (in.)	Cross Sectional Area (in^2)	Tangential Stress (psi)	Axial Stress (psi)	
2	0.125	0.005	0.049	25	50	
4	0.125	0.005	0.049	50	100	
6	0.125	0.005	0.049	75	150	
8.5	0.125	0.005	0.049	106.25	212.5	

Design for Manufacturability

Membrane manufacturing:

- Prototype Manufacturing:
 - $L = 16.28 \pm 0.1$ in
 - $D_{channel} = 0.25 \pm 0.01 \text{ in}^{\dagger}$
 - \circ W = 5 ± 0.1 in
 - Impulse sealing
 - Temperature setting \rightarrow T = 5 $\pm \frac{1}{2}$
 - Duration of seal \rightarrow t = 10 ± 1 s

References

¹ D.Parry, NRL Press Release, (2012)

² M. Schubert and J. Werner, *Materials Today*, 9 (2006)

³C.Clark, Small Satellite Conference, 2 (2003)

⁴Z. Yang et al., Angewandte Chemie, 52 (2013)

⁵ H. Spanggaard et al., Sol. Enrg. Mat. & Sol. Cell, 83(2004)

⁶ Anthony Watts, Whats Up With That, (2010)

⁷ "US Patent Full-Text Database Number Search." US Patent Full-Text Database Number Search. N.p., n.d. Web. 21 Nov. 2013.

